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Abstract. To dimension network links, such that they will not become QoS bottle-
necks, the peak rate on these links should be known. To measure these peaks on
sufficiently small time scales, special measurement tools are needed. Such tools
can be quite expensive and complex. Therefore network operators often rely on
more cheap, standard tools, like MRTG, which were designed to measure average
traffic rates (m) on time scales such as 5 minutes. For estimating the peak traffic
rate (p), operators often use simple rules, such asp = α · m. In this paper we
describe measurements that we have performed to investigate how well this rule
describes the relation between peak and average traffic rate. In addition, we pro-
pose some more advanced rules, and compare these to the simple rule mentioned
above. The analyses of our measurements, which have been performed on differ-
ent kinds of networks, show that our advanced rules more adequately describe the
relation between peak and average traffic rate.
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1 Introduction
To achieve a sufficiently good Quality of Service (QoS) level, operators’ network links have
to be dimensioned such that traffic bursts on small time scales are transmitted without expe-
riencing substantial congestion. Hence, to be able to prevent such overload situations, it is
of crucial importance to know (an estimation of) the peak traffic rate. To determine the peak
traffic rate, detailed (i.e., on a small time scale) measurements should be performed, requiring
considerable effort (in terms of resources and cost). Long-term, e.g., 5 minutes, average traffic
rates however, can be estimated easily by using standard tools like the Multi Router Traffic
Grapher (MRTG) [2]. Thus it would be useful to have a methodology that shows the relation
between the average and peak traffic rate, i.e., without the need to constantly perform detailed
measurements. Ideally, one would like to have a fixed mathematical rule that predicts the peak
traffic rate on a network link, using average traffic rate information.

Contribution. We propose and evaluate (mathematical) rules that determine the (statistical)
relation between the average network traffic rate, as can be measured using MRTG on a time
scale of 5 minutes, and the peak traffic rate on, e.g., a time scale of 1 second. Because of our
ultimate goal, i.e., configuration management and link dimensioning in particular, we chose to
determine rules that are conservative in terms of relating average to peak network traffic rates.

Approach. We follow an empirical approach to find the relation between average and peak traf-
fic rates. Therefore we have performed (detailed) traffic measurements on existing networks.
We introduce these measurements in Section 2. Our analyses start in Section 3, with deter-
mining to what extent a simple rule like “50% overdimensioning is required to handle traffic
peaks” suitably expresses the relation between average and peak traffic rates. This (linear) rule
can be written asp = α ·m, wherem is the average traffic rate, andp the peak traffic rate. In
Section 4 we subsequently investigate a number of alternative, more advanced rules to express
the relation between average and peak traffic rates. Section 5 concludes.



2 Measurements
The measurements in this study are performed on so-called “uplinks” connecting various access
networks to core (“backbone”) networks. See [3] for an overview of our measurement setup,
equipment and software. The three uplinks that have been measured in this study, can be
characterized as follows: #1 is the 1 Gbit/s link connecting an organization of about 200 people,
each having a FastEthernet access link, to the backbone of the Dutch research and educational
network. The uplink of network #2 carries the aggregated traffic of about 1000 users; their
access network is similar to #1, as is the uplink’s capacity. To verify our findings in another
(common) network infrastructure, i.e., ADSL access, we have performed measurements on a
number of uplinks of DSLAMs to a commercial ADSL operator’s backbone network. We refer
to these DSLAM uplinks as network #3.

Our general approach is that we measure the throughput per second, within a 5 minute inter-
val. From the resulting 300 throughput rates, we calculate the 5 minute average (referred to as
m). In addition, we determinep, which denotes the 99th percentile of the 1 second traffic rates.
This measurement procedure is repeated multiple times for each of the networks. Note that,
when keeping (efficient) link dimensioning in mind, it is not illogical to omit a few (exception-
ally) high measurement values. The choices of time scale for the (detailed) measurements (T ),
as well as the percentile (1 − ε) that is used as the basis to determine the peak traffic rate, will
be application-dependent. Our choices forT = 1 second andε = 0.01 are motivated by our
expectation that these values corresponds to time scales and QoS objectives relevant to users
browsing the WWW. Although for other applications the values forT and/orε may change, the
methodology presented in this paper can remain. Note that smaller values forT andε, will lead
to higher values ofp [3].

3 A Simple Rule
In this section we investigate the effectiveness of the simplest approach to relating average to
peak traffic rates: “the peak traffic rate is, e.g., 50% higher than the average traffic rate”. This
corresponds to the linear relationp = α ·m, in which the parameterα is 11

2
.

First we present the rough measurement data, and discuss the need to omit a certain (small)
part of this data in order to get rid of “outliers”. Next, we follow a numerical approach to find
a linear rule to describe the relation betweenm andp, which fits the measurement data, and we
introduce a criterion to objectively measure the effectiveness of that rule.

Measurement results. The measurements on network #1 provide numereous combinations of
mean and peak traffic rates:(m, p)-tuples. We plot all the(m, p)-tuples in a single graph, as
shown in Figure 1. The graph shows a dense cloud, and a group of some 20–30 tuples that
fall outside this cloud. The latter group can be divided into two subgroups: the tuples on the
right-hand side of the cloud, and the tuples above the cloud. The reason that there are only few
tuples right of the cloud is caused by the simple fact that there are only a few instances where
the 5 minute average throughput rate is that high. The tuples above the cloud are caused by
measurements in which there are a few seconds with a large throughput rate, which is possible
by relatively small flows that have a large throughput rate. Such flows are possible because of
the high access link speed.

Since the context of our study is link dimensioning, we are not so much interested in finding
a rule that, for givenm, estimates theaveragep, but rather themaximump. This is because a
rule for averagep underestimates the peak traffic rate in approximately half of all cases. Once
we know, for eachm, the corresponding maximump, we can draw a line through these(m, p)-
tuples. In principle all tuples will be below or on this line. In this section, we focus on the
rule p = α · m. If we would draw such a line in Figure 1, the line would be a straight line
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Figure 1:m v. p for network #1,
outliers not removed
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Figure 2:m v. p for network #1,
fit: p̂ = 3.80 ·m

through the root(0, 0). The line would have a steep slope, which is determined by a small
number of “outliers”: the points at the left of the figure, above the cloud. Since we do not want
our rules to be affected by these outliers, we change the requirement that a rule should estimate
the maximump for givenm, into 90% of the measured(m, p)-tuples must be below the line
that is inferred from the rule. Basically, this means that we do not want to honour 100% of
the resource claims, but only 90%. Note, however, that this does not necessarily mean that the
10% “outliers” receive a bad QoS. From experiments not described in this paper, we learned
that other choices for “outlier filtering”, e.g., “95% of the tuples should fall below the line”, do
not significantly change the conclusions of this paper.

In the remainder of this paper, we will present the various rules while considering 10% of
all (m, p)-tuples as outliers. As for notation, we will usep̂ to denote theestimationof the peak
traffic rate for given average traffic ratem; m andp refer to individual measurements.

Linear relation. The simplest relation between average and peak traffic rates is a linear relation
of the form:

Rule 1: p̂ = α ·m
Thus we want to approximate the cloud of(m, p)-tuples with a straight line through the

root (0, 0). As argued in 3.1, we want to find a fit that gives sufficiently large values ofp̂
for 90% of the measurement points. There is no standard mathematical approach to find this
fit. We therefore determine the value ofα numerically, by starting at its minimum value of1
(corresponding tôp = m), and then slowly increasing the slope of the rule until 90% of all
(m, p)-tuples are below or on this line.

We have determined, see Figure 2, that for network #1 the best fit of the form of rule 1 is
p̂ = 3.80 · m. An important observation is that for larger values ofm, the line that has been
found overshoots the cloud significantly, i.e., there is a large difference between the measured
p and the estimation̂p. The figure also shows that most outliers are found to stem from relative
small values ofm. Note that for presentation purposes, tuples withm > 25 are not shown in
this figure; they have, however, been taken into account in the calculations that lead to the fit.

In order to verify the results from the measurements on network #1, the same procedure has
been applied to networks #2 and #3, see Figure 3 and Table 1. For network #2, it looks like
that there are hardly any outliers. This is due to the fact that the cloud is very dense for small
values ofm. Note that theα required to meet the requirement of “90% of all (measured) peaks
should be below the line” is considerably smaller in networks #2 (i.e., 2.27) and #3 (i.e., 1.61),
compared to network #1. This observation can be explained by the fact that (on average) the
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Figure 3:m v. p for network #2,
fit: p̂ = 2.27 ·m
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Figure 4:m v. p for network #1,
fit: p̂ = 2.09 ·m + 4.92

access link rates are smaller compared to the capacity of the measured link, thereby limiting
the impact that a small number of users can have on the aggregate traffic, which implies that
the average peak-to-mean ratio also decreases.

A criterion for goodness-of-fit. In order to objectively judge how effectively a rule fits the
cloud, we introduce the following measure, for which we coin the termaverage relative over-
shootingΦ:

Φ :
1

#pi

∑
i

p̂i − pi

pi

· 100% , ∀i : pi ≤ p̂i

This formula determines for all(m, p)-tuples that are below the line, the relative difference
between the measured value ofp, and the calculated̂p. The resulting sum is then averaged
over all tuples. The lower the sum, the lower the average relative overshooting, and thus (by
definition) the better the fit. In this study, we chose to ignore the measured values ofp that are
above the line. The reason for this choice that we want to be as accurate as possible for that part
of the cloud that meets our requirement of “90% of all (measured) peaks should be below the
line”. Hence, in this study, it does not matter whether an ignored tuple is just above, or multiple
factors above the line. In Table 1, an overview is given of the average relative overshooting for
both rule 1 as well as the more advanced rules as will be described in the next section.

4 Advanced Rules
The main problem with rule 1 is that a linear relation of the formp̂ = α · m overshoots the
measured peaks for larger average traffic rates. In this section we discuss various alternative
rules to tackle this problem. The initial approach that we follow is that we add a second pa-
rameter to the formula. Generally spoken, the more parameters, the better the fit for a cloud of
measurement points can be.

Linear relation plus a constant. The simplest solution to solve the overshooting problem for
largerm, is that of decreasing the slope of the line. In order to have the rule to remain applicable
for smallerm as well, we need to add a constant,γ, as parameter to the linear relation:

Rule 2: p̂ = α ·m + γ

When applied to the measurements from network #1, we find that we can best fit the cloud
with: p̂ = 2.09·m+4.92, see Figure 4. The graph shows that we do not “overshoot” as much as
without the constantγ, an observation that is confirmed when we calculate the average relative
overshooting: 52%, instead of the 85% obtained with rule 1. A drawback is that rule 2 does not
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Figure 5:m v. p for network #3,
fit: p̂ = m + 1.01

√
m

Network Rule Fit Φ
#1 1 p̂ = 3.80 ·m 83 %
#1 2 p̂ = 2.09 ·m + 4.92 52 %
#1 3 p̂ = 5.42 ·m0.67 47 %
#1 4 p̂ = m + 4.55 ·m0.54 48 %
#1 5 p̂ = m + 4.86 ·

√
m 49 %

#2 1 p̂ = 2.27 ·m 49 %
#2 2 p̂ = 1.81 ·m + 1.45 39 %
#2 3 p̂ = 2.98 ·m0.85 43 %
#2 4 p̂ = m + 1.99 ·m0.74 43 %
#2 5 p̂ = m + 3.66 ·

√
m 63 %

#3 1 p̂ = 1.61 ·m 24 %
#3 2 p̂ = 1.19 ·m + 1.17 9 %
#3 3 p̂ = 1.87 ·m0.85 8 %
#3 4 p̂ = m + 0.99 ·m0.51 8 %
#3 5 p̂ = m + 1.01 ·

√
m 8 %

Table 1: Overview of determined rules and
corresponding overshooting numbers

hold for m = 0: if there is no traffic, the peak traffic rate should be0, but withγ > 0, rule 2
yields p̂ > 0.

After applying rule 2 on networks #2 and #3, we find that also in these cases average relative
overshooting improves; see Table 1 for details.

Non-linear relations. Rules 1 and 2 describe a linear relation betweenm andp. We now
investigate the applicability of a non-linear relation, described by the following two rules:

Rule 3: p̂ = α ·mβ

From the shape of the cloud of(m, p)-tuples it is clear that the exponentβ must be smaller
than 1. As the average relative overshooting figures in Table 1 show, rule 3 performs better than
rule 1, but not always better than rule 2. A fundamental problem with rule 3, however, is that
for m (much) larger than the values we have measured, the estimatedp̂ will be smaller thanm,
because ofβ < 1.

Rule 4 makes use of the fact that the peak traffic rate consists of two parts: the average traffic
rate, plus a fraction that resembles the variation in the traffic rate (burstiness), hereby solving
the fundamental problem of rule 3:

Rule 4: p̂ = m + α ·mβ

For network #1, we find the best fit of the form of rule 4 to bep̂ = m + 4.55 · m0.54. The
verification procedure gives for networks #2 and #3 anα of 1.99 and0.99, and aβ of 0.74
and0.51, respectively. The resulting average relative overshooting numbers show that rule 4 is
comparable in this respect to rules 2 and 3.

Simple additive non-linear relation. The values ofβ that were found while investigating rule
4, suggest that a simple variant, with only one parameter (α) and a fixed valueβ = 1

2
, might

also effectively describe the relation between average and peak traffic rates:

Rule 5: p̂ = m + α ·
√

m

Remarkably, this rule is the same as a rule developed over half a century ago to predict peak
loads from the mean usage in trunks of telephony lines, see e.g., [1].

It turns out that, for networks #1 and #3, this rule gives a comparable average relative over-
shooting as rules 2 to 4 (see Figure 5 and Table 1). However, rule 5 needs only a single



parameter. Thus for networks #1 and #3, the decoupling ofp̂ in the average traffic rate and the
variation in traffic rates gives significant gain compared to the other rule with only one param-
eter, i.e., rule 1. Unfortunately, for network #2, rule 5 gives a worse result in terms of average
relative overshooting than the other rules do. This is probably what we could have expected
when looking at the values ofβ that belong to rule 4: for network #2,β (i.e., 0.74) did certainly
not suggest a relation betweenm andp̂ to be of the form of rule 5.

Still we may conclude that, regardless of the heterogeneity and burstiness of Internet traffic,
in some scenarios the old telephony model works remarkably good. This can probably be
explained by the fact that, given sufficient aggregation of traffic sources and limited end-user
traffic rates, the scenario is comparable to that of a trunk of telephone circuits.

5 Conclusions
In this paper we have investigated the relation between average traffic rate on a time scale of 5
minutes, and peaks in the traffic rates on the smaller time scale of 1 second. We have empiri-
cally developed rules that describe this relation. These rules give insight in peak traffic rates on
a time scale of, e.g., 1 second, while only requiring rough network traffic measurements, e.g.,
on a time scale of 5 minutes.

From our study on three live networks, we conclude that a traditional, linear formula of the
form p = α ·m (rule 1) is not the best way to describe the relation between average and peak
traffic rates. We have investigated various alternatives to this rule, which are slightly more
complicated:α ·m + γ (rule 2),α ·mβ (rule 3),m + α ·mβ (rule 4) andm + α ·

√
m (rule 5).

It turns out that all these alternatives show significantly better results than rule 1. The average
relative overshooting, which we introduced as a measure to judge the effectiveness of these
rules, is significantly less when compared to rule 1. The differences in results between rules 2
to 5 are minor; it is hard to judge which is in every case the best rule.

From an engineering perspective we may conclude that rule 2 gives the best results, as this
is a formula that is easy to understand and to reason about. A drawback, however, is that there
are two parameters, and hence it requires considerable effort to find the optimal combination
of the parameters. From an analytical and modeling perspective, we may conclude that rule
5 most effectively describes the relation between average and peak traffic rates (under certain
circumstances, as argued in Section 4). Rule 5 is attractive, since it gives reasonably good
results in terms of average relative overshooting, with only a single parameter.

Future work. In future work, we will study which factors may influence the parametersα,
β andγ. It is likely that these parameters depend on the chosen values ofT andε, and the
specific environment: network topology, applications, number of clients, user behavior, etc.
The goodness-of-fit criterion may also be subject of further study, e.g., to include business-level
aspects. In future work we will also study the mathematical foundations under the formulas
described in this paper.
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